历史背景
美国物理学家 N.Metropolis 和同仁在1953年发表研究复杂系统、计算其中能量分布的文章,他们使用蒙特卡罗模拟法计算多分子系统中分子的能量分布。这相当于是本文所探讨之问题的开始,事实上,模拟退火中常常被提到的一个名词就是Metropolis准则 。
美国IBM公司物理学家 S.Kirkpatrick、C. D. Gelatt 和 M. P. Vecchi 于1983年在《Science》上发表了一篇颇具影响力的文章:《以模拟退火法进行最优化(Optimization by Simulated Annealing)》。他们借用了Metropolis等人的方法探讨一种旋转玻璃态系统(spin glass system)时,发觉其物理系统的能量和一些组合最优(combinatorial optimization)问题(著名的旅行推销员问题TSP即是一个代表例子)的成本函数相当类似:寻求最低成本即似寻求最低能量。由此,他们发展出以 Metropolis 方法为本的一套算法,并用其来解决组合问题等的寻求最优解。
几乎同时,欧洲物理学家 V.Carny 也发表了几乎相同的成果,但两者是各自独立发现的;只是Carny“运气不佳”,当时没什么人注意到他的大作;或许可以说,《Science》杂志行销全球,“曝光度”很高,素负盛名,而Carny却在另外一本发行量很小的专门学术期刊《J.Opt.Theory Appl.》发表其成果因而并未引起应有的关注。
Kirkpatrick等人受到Metropolis等人用蒙特卡罗模拟的启发而发明了“模拟退火”这个名词,因为它和物体退火过程相类似。寻找问题的最优解(最值)即类似寻找系统的最低能量。因此系统降温时,能量也逐渐下降,而同样意义地,问题的解也“下降”到最值。
物理背景
在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」,quenching)时,会导致不是最低能态的非晶形。
如下图所示,首先物体处于非晶体状态。我们将固体加温至充分高,再让其徐徐冷却,也就退火。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小(此时物体以晶体形态呈现)。
算法内容
想象一下如果我们现在有下面这样一个函数,现在想求函数的(全局)最优解。如果采用Greedy策略,那么从A点开始试探,如果函数值继续减少,那么试探过程就会继续。而当到达点B时,显然我们的探求过程就结束了(因为无论朝哪个方向努力,结果只会越来越大)。最终我们只能找打一个局部最后解B。
模拟退火其实也是一种Greedy算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以上图为例,模拟退火算法在搜索到局部最优解B后,会以一定的概率接受向右继续移动。也许经过几次这样的不是局部最优的移动后会到达B 和C之间的峰点,于是就跳出了局部最小值B。
根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变数,k为Boltzmann常数。Metropolis准则常表示为
Metropolis准则表明,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE) = exp( dE/(kT) )。其中k是一个常数,exp表示自然指数,且dE<0。所以P和T正相关。这条公式就表示:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(因为退火的过程是温度逐渐下降的过程),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。随着温度T的降低,P(dE)会逐渐降低。
我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。也就是说,在用固体退火模拟组合优化问题,将内能E模拟为目标函数值 f,温度T演化成控制参数 t,即得到解组合优化问题的模拟退火演算法:由初始解 i 和控制参数初值 t 开始,对当前解重复“产生新解→计算目标函数差→接受或丢弃”的迭代,并逐步衰减 t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值 t 及其衰减因子Δt 、每个 t 值时的迭代次数L和停止条件S。
总结起来就是:
- 若f( Y(i+1) ) <= f( Y(i) ) (即移动后得到更优解),则总是接受该移动;
- 若f( Y(i+1) ) > f( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)相当于上图中,从B移向BC之间的小波峰时,每次右移(即接受一个更糟糕值)的概率在逐渐降低。如果这个坡特别长,那么很有可能最终我们并不会翻过这个坡。如果它不太长,这很有可能会翻过它,这取决于衰减 t 值的设定。
关于普通Greedy算法与模拟退火,有一个有趣的比喻:
- 普通Greedy算法:兔子朝着比现在低的地方跳去。它找到了不远处的最低的山谷。但是这座山谷不一定最低的。这就是普通Greedy算法,它不能保证局部最优值就是全局最优值。
- 模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向低处,也可能踏入平地。但是,它渐渐清醒了并朝最低的方向跳去。这就是模拟退火。
通过一个实例来编程演示模拟退火的执行。特别地,我们这里所采用的实例是著名的“旅行商问题”(TSP,Traveling Salesman Problem),它是哈密尔顿回路的一个实例化问题,也是最早被提出的NP问题之一。
费马点问题
题意:给n个点,找出一个点,使这个点到其他所有点的距离之和最小,也就是求费马点。
1 | #include <iostream> |
题目:平面上给定n条线段,找出一个点,使这个点到这n条线段的距离和最小。
1 | #include <iostream> |
最小包含球问题
1 | #include <iostream> |
函数最值问题
给出方程F(x) = 6 x^7+8x^6+7x^3+5x^2-y*x (0 <= x <=100)
输入y 求x的最小值
1 | #include <iostream> |
TSP问题
假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。
1 | #include <iostream> |
数据
1 | 27 |